新闻

室温超导材料:将改变我们所知道的世界

作者:德国赌场 发布时间:2020-12-28 09:55 点击数:

  美国罗彻斯特大学的工程师和物理学家利用氢气在极高的压力下压缩成简单的固体分子,首次创造出了在室温下具有超导性的材料。这项研究是由物理和工程助理教授兰加·迪亚斯(Ranga Dias)的实验室完成的,并在近日成为《自然》杂志的封面故事。

  超导体是指在特定温度下电阻为0的导体,零电阻和完全抗磁性是超导体的两个重要特性。迪亚斯表示,开发室温超导材料是凝聚态物质物理学的“圣杯”,研究者们已经寻找了一个多世纪,这些材料“绝对可以改变我们所知道的世界”。

  为了创造新的记录,迪亚斯和他的研究团队将氢、碳和硫结合在一起,以光化学合成方法在一个金刚石压腔中合成了简单的有机衍生碳质硫氢化物。金刚石压腔是一个用来检测极高压力下极微量材料的研究设备。

  碳质硫氢化合物在约15摄氏度和约2670亿帕的压力下表现出超导性。这是人类第一次在室温下观察到超导现象。迪亚斯说:“由于低温的限制,具有如此优异性能的材料并没有像许多人想象的那样彻底改变世界。然而,我们的发现将打破这些障碍,并为许多潜在的应用提供可能。”目前,他也在参与罗彻斯特大学的材料科学和高能密度物理项目。

  促进医学成像和核磁共振等扫描技术,以及心磁图扫描(magnetocardiography)的发展;

  这项发现的合著者、美国内华达大学拉斯维加斯分校的阿什肯·萨拉马特(Ashkan Salamat)说:“现在我们生活在一个半导体社会,有了这种技术,我们就将进入一个超导社会,你将不再需要电池之类的东西,”。

  金刚石压腔所产生的超导材料的量是用“皮升”(picoliter,缩写为pL)来测量的,1皮升为1升的万亿分之一,大约是打印机单个喷墨墨滴的大小。

  迪亚斯表示,下一个挑战是找到在较低压力下制造室温超导材料的方法,这样就可以节省成本并提高产量。与金刚石压腔内产生的数千亿帕压力相比,海平面上地球的大气压(即标准大气压)只有101325帕。

  超导体在1911年首次被发现,具有两个关键的特性:一是电阻完全消失,二是完全抗磁性,又称迈斯纳效应。磁场线无法穿过超导体,必须在超导材料周围传递,使其有可能悬浮起来。这一现象这可以用于无摩擦的高速列车,即磁悬浮列车。如今,超导现象的应用已经相当广泛,强大的超导电磁铁已经成为磁悬浮列车、核磁共振成像(MRI)和核磁共振(NMR)机器、粒子加速器和其他先进技术的关键部件,包括早期的量子超级计算机。

  然而,这些设备中使用的超导材料通常只能在极低的温度下工作——比地球上任何自然温度都低。这一限制使得维护它们的成本很高,而且难以扩展到其他潜在的应用上。“将这些材料保持在低温下的成本太高,因此无法真正充分地利用它们,”迪亚斯说道。

  在此之前,超导材料的最高温度是2019年在德国马克斯·普朗克化学研究所的米哈伊尔·埃雷米茨(Mikhail Eremets)实验室,以及美国伊利诺伊大学的拉塞尔·赫姆利(Russell Hemley)的研究小组实现的。该研究团队报告了用镧超氢化物在零下23摄氏度左右的超导性。近年来,研究人员还探索了铜氧化物和铁基化学物质作为高温超导体的潜在可能性。不过,作为宇宙中最丰富的元素,氢也是一种很有前景的元素。

  “要获得高温超导体,你需要更强的化学键和更轻的元素。这是两个非常基本的标准,”迪亚斯道,“氢是最轻的材料,而氢键是最强的化学键之一。从理论上讲,固体金属氢具有很高的德拜温度和很强的电子-声子耦合,这是室温超导所必需的。”

  然而,仅仅是将纯氢转化为金属状态就需要非常高的压力。2017年,哈佛大学教授艾萨克·西尔维拉(Isaac Silvera)和当时在其实验室做博士后研究的迪亚斯合作,在实验室中首次实现了这一目标。

  在罗彻斯特大学的实验室里,迪亚斯在研究方法上追求一种“范式转变”,即使用一种替代性的富氢材料,这种材料既模拟了纯氢的超导相,而且可以在更低的压力下实现金属化。

  首先,研究人员在实验室中结合了钇和氢。由此产生的超氢化钇表现出了超导电性,当时的温度约为零下11.1摄氏度,压力约为1790亿帕。

  接下来,研究人员对共价富氢有机物衍生材料进行了探索。他们认为,通过加入第三种元素——碳,可以使临界温度提得更高,因为碳能与邻近原子形成很强的化学键。

  最终,这项工作的成果便是一种简单的碳质硫氢化物,可以将实现超导的温度提高到15摄氏度。研究人员在报告中称:“碳的存在在这里也同样重要。”他们还表示,对这一元素组合进行进一步的“成分调整”,可能是在更高温度下实现超导性的关键。

  不过,也有研究者认为,迪亚斯的实验条件十分极端,意味着距离实际应用还非常遥远。目前,迪亚斯和萨拉马特已经创建了一家名为“非凡材料”(Unearthly Materials)的公司,希望能找到一种在日常压力环境下可大规模生产的室温超导材料。在他们的这篇论文发表之后,相信世界各地也会有许多理论和实验小组加入到对这一问题的研究当中。

  选择电阻至少要从以下五个因素考虑:电阻类型、额定功率、额定电压、温度系数、精度。

  AEL-5000系列交/直流电子负载内建16位A/D及DSP等精准的量测电路,提供了精确的测量值,测....

  我一直有一个感觉:咱们硬件工程师,会遇到各种各样的问题,亦或是各种各样的现象,总会有一个非常简单的解....

  专网通信是指在特定的区域进行信号覆盖的专业网络,有效弥补了公网通信所无法涉及的领域,成为我国信息化建....

  1.8V转3V和3.3V的电源芯片PW5100的数据手册和方案详细说明

  1.8V 电平如何稳压稳定输出 3V 或者 3.3V,就需要用到 1.8V 转 3V,1,8V 转 ....

  本文档的主要内容详细介绍的是电路的基本概念和基本定律的学习课件免费下载包括了:1 电路和电路模型 ,....

  当热敏电阻采用金属保护管时,为减少由热传导引起的误差,要保证有足够的插入深度。当介质为水和气体时,其....

  HM8201 是一款专门为高精度的线性锂电池充电器而设计的电路,非常适合那些低成本、便携式的充电器使....

  清洁冷压端子时,可以用丝布擦拭,然后用无水乙醇擦拭,需要彻底干燥才能使用,丙酮不能用于损坏接头,或者....

  在端子座上安装绝缘端子时,整体设计应注重压缩长度,大于螺丝直径,安装时应将端子完全插入插座内,保证绝....

  电阻阻值是用来表示导体对电流阻碍作用的大小的一个单位,单位是欧姆(Ω)。导体的电阻越大,表示导体对电....

  RM9006AB是一款可分段调节亮度/色温的LED线性恒流驱动芯片,适用于 220V AC/120V....

  RM9003A是一款与可控硅调光器兼容的单级LED恒流驱动控制芯片应用程序。输出当外部感测电阻设定一....

  HM8201A 是一款专门为高精度的线性锂电池充电器而设计的电路,非常适合那些低成本、便携式的充电器....

  HM4056是一款恒流恒压线性充电芯片,提供涓流,恒流,恒压标准三段式充电,可提供持续1A的充电电流....

  1、线电阻的电压降的影响——地电平(0 电平)直流引起的低电平提高图中虚线为提高的情况。提高幅度与 ....

  一、目地  为使对欧姆龙开关的电气设备特性的检验方式有一明文规定,特制订之。 二、应用领域  本规范....

  HM8211 是一款专门为高精度的线性锂电池充电器而设计的电路,非常适合那些低成本、便携式的充电器使....

  松下电器产业株式会社机电解决方案公司将于2020年12月开始批量生产 “电阻内置型 绿松石行程微型开....

  很多人以为,电容量就是电容器的容量,其实不然,电容量并不是电容器的容量。电容器的容量是电容器的标称参....

  本文档的主要内容详细介绍的是双极型三极管放大电路的三种基本组态的学习课件免费下载包括了:共集电极放大....

  电工仪器仪表,一般指测量或检验电压、电流、电阻或功率的通用仪器装置,其可以分为指示仪表和较量仪表两类....

  下面介绍影响分流器采样精度的阻值因素。分流器的初始阻值偏差:电阻的初始阻值偏差,这个大家熟悉,像常用....

  高压输电线路杆塔接地电阻在线监测装置 架空高压输电线路发生跳闸多半原因是雷击造成的,降低接地电阻值是....

  该可控温度电烙铁电路设计主要由降压整流、自动控制和加热指示3部分构成。其中自动控制模块的负温度系数电....

  在电学中,常把对电路中电流所起的阻碍作用叫做阻抗。阻抗单位为欧姆,常用Z表示,是一个复数Z= R+i....

  开关电源,又称交换式电源、开关变换器,是一种高频化电能转换装置,是电源供应器的一种。民熔开关电源利用....

  利用电桥电路精确测量电阻及其它模拟量的历史已经很久远。本文讲述电桥电路的基础并演示如何在实际环境中利....

  绕线电阻是将镍铬合金导线绕在氧化铝陶瓷基底上,一圈一圈控制电阻大小。绕线电阻可以制作为精密电阻,容差....

  用字母表示产品的材料:A-钽电解、B-聚苯乙烯等非极性薄膜、C-高频陶瓷、D-铝电解、E-其它材料电....

  即使没有反向电流,只要不断地提高反向电压,迟早会使二极管损坏。这种能加上的反向电压,不是瞬时电压,而....

  用在开关电源中的电解电容如果损坏,则开关电源可能不起振,没有电压输出;或者输出电压滤波不好,电路因电....

  “缺货”是近期半导体供应链的热词。年初因疫情爆发引发半导体供应危机,现在接近年底,半导体供应....

  我们知道,使用物质的固有电阻可制成各种电阻资料,其用处是很广泛的,按它们的功能能够分为如下几个方面: (1)使用其能...

  本篇介绍一个种不依赖昂贵检测设备的偏置电流测试方法,同时配合 LTspice 仿真增强理解。工程师可....

  陶瓷贴片电容主要特性参数介绍,陶瓷贴片电容是MLCC的简称,贴片电容目前在市场上的年使用量可达上百亿....

  低压线X系列是一款高精度的线性恒流芯片并且支持模拟调光,智能调光,低压....

  压敏电阻常常与保护元件并联使用,要是放在电源入口处基本在保险丝后面,当压敏电阻失效后保险丝可以起到保....

  12月2日,资本邦获悉,据IT桔子消息,奥松电子近日完成1亿人民币C轮融资,投资方为毅达资本、广州凯....

  科学家创造出了一种非常神秘的材料,这种材料似乎能在最高15°C的室温下实现超导,创下了超导性的一个新....

  问:再问AD8479内部电阻的阻值是多少? 上一篇AD8479内部电阻的计算,是以其与AD629内部....

  2790数字源表开关系统为用户提供了一个高压、多通道电阻测量解决方案,能够快速、简洁地实现安全气囊充....

  芯片延迟Delay测试的学习课件PDF文件免费下载包括了:• 为什么需要Delay测试 • Dela....

  项目背景 西安某大学是一所以发展航空、航天、航海(三航)等领域人才培养和科学研究为特色的多科性、研究型、开放式大学,是国...

  LCR测试仪是一种采用交流方式测量电感、 电容、 电阻、 阻抗等无源元件参数的装置。 用LCR测试仪....

  1、引言 当今电子元件的设计追求高性能, 而同时又致力于减少尺寸、 功耗和成本。 有效而准确的元件性能描述、 设计、 评估和...

  据悉,华新科大马厂是合并日本釜屋电机所取得,产品线涵盖车用、消费性电子等电阻,占该公司整体产能比重约....

  1、限流电阻功率太小。 2、电解电容变质。对于电解电容,如果一直使用,它不容易坏;如果长时间不用,反而容易损坏。电...

  电子发烧友网站提供《手持红外测温仪为何爆发式增长的原理你知道吗.pdf》资料免费下载

  外围器件的选用 在此说明关于如何选用DC/DC转换器IC外围器件。因外围器件对DC/DC转换器的各个....

  新冠肺炎疫情对被动供应链的冲击似卷土重来,据工商时报报道,全球芯片电阻二哥华新科旗下马来西亚厂传出有....

  当p片向右移动时,变阻器R的阻值减小,总电阻减小,总电流(也是通过变阻器R的电流)增大,定值电阻两端....

  无源衰减是用于同时改善阻抗匹配削弱或“衰减”的传输线的信号电平,使得纯电阻网络无源衰减放大器的对面。 无源衰减器电连接在...

  我在某些CMOS器件的输入端看到了限流电阻,而大多数却并没有,有人说最好在器件的所有端口都接上470ohm的电阻来增加稳定性,...

  Pi-pad衰减器,因为它的基本布局和设计类似于希腊字母pi(π),这意味着它有一个串联电阻,并在输入和输出的两个平行分流电阻...

  AC信号放大器电路的目的是稳定放大器的DC偏置输入电压,从而仅放大所需的AC信号。 这种稳定是通过使用发射极电阻来实现的...

  本文中所说的比率特性是指器件输出与待测量和其他电压或电流的比例有关。 传感器和阻性检测元件 许多传感器的输出与其电源电...

  AD5112 单通道、64位、I2C接口、±8%电阻容差、非易失性数字电位计

  信息优势和特点 标称电阻容差误差:±8%(最大值) 游标电流:±6 mA 可变电阻器模式下的温度系数: 35 ppm/°C 低功耗:2.5 μA(最大值,2.7 V,125°C) 宽带宽:4 MHz(5 kΩ选项) 上电EEPROM刷新时间: 50 μs 125°C时典型数据保留期:50年 100万写周期 模拟电源电压:2.3 V至5.5 V 逻辑电源电压:1.8 V至5.5 V 宽工作温度范围:−40℃至+125℃ 2 mm × 2 mm × 0.55 mm、8引脚超薄LFCSP封装 欲了解更多特性,请参考数据手册产品详情AD5112为64位调整应用提供一种非易失性解决方案,保证±8%的低电阻容差误差,A、B和W引脚提供最高±6 mA的电流密度。低电阻容差、低标称温度系数和高带宽特性可以简化开环应用和容差匹配应用。新的低游标电阻特性将电阻阵列两个极值之间的游标电阻降低至45 Ω(典型值)。游标设置可以通过I2C兼容型数字接口控制,也可以利用该接口回读游标寄存器和EEPROM内容。电阻容差存储在EEPROM中,端到端容差精度为0.1%。AD5112采用2 mm × 2 mm LFCSP封装,保证工作温度范围为−40°C至+125°C的扩展工业温度范围。应用 机械电位计的替代产品 便携式电子设备的电平调整 音量控制 ...

  AD5110 单通道、128位、I2C接口、±8%电阻容差、非易失性数字电位计

  信息优势和特点 标称电阻容差误差:±8%(最大值) 游标电流:±6 mA 可变电阻器模式下的温度系数: 35 ppm/°C 低功耗:2.5 μA(最大值,2.7 V,125°C) 宽带宽:4 MHz(5 kΩ选项) 上电EEPROM刷新时间: 50 μs 125°C时典型数据保留期:50年 100万写周期 模拟电源电压:2.3 V至5.5 V 逻辑电源电压:1.8 V至5.5 V 宽工作温度范围:−40℃至+125℃ 2 mm × 2 mm × 0.55 mm、8引脚超薄LFCSP封装 产品详情AD5110提供了针对128位调整应用的非易失性解决方案,保证±8%的低电阻容差误差,A、B和W引脚之间的电流密度可达±6 mA。低电阻容差、低标称温度系数和高带宽等特性可简化开环应用和容差匹配应用。新的低游标电阻特性将电阻阵列两个极值之间的游标电阻降低至45 Ω(典型值)。游标设置可通过I2C兼容型数字接口控制,该接口还用于回读游标寄存器和EEPROM内容。电阻容差存储在EEPROM内,端到端容差精度为0.1%。AD5110采用2 mm × 2 mm LFCSP封装。器件的保证工作温度范围为−40°C至+125°C的宽工业温度范围。应用 机械电位计的替代产品 便携式电子设备的电平调整 音量控制 低分辨率DAC LCD面板亮度...

  AD5111 单通道、128位、升/降接口、±8 %电阻容差、非易失性数字电位计

  信息优势和特点 标称电阻容差误差:±8%(最大值) 游标电流:±6 mA 可变电阻器模式下的温度系数:35 ppm/°C 低功耗:2.5 μA(最大值,2.7 V,125°C) 宽带宽:4 MHz(5 kΩ选项) 上电EEPROM刷新时间: 50 μs 125°C时典型数据保留期:50年 100万写周期 2.3 V至5.5 V电源供电 内置自适应去抖器 宽工作温度范围:−-40℃至+125℃ 2 mm × 2 mm × 0.55 mm、8引脚超薄LFCSP封装产品详情AD5111提供了针对128位调整应用的非易失性解决方案,保证±8%的低电阻容差误差,A、B和W引脚之间的电流密度可达±6 mA。低电阻容差、低标称温度系数和高带宽等特性可简化开环应用和容差匹配应用。新的低游标电阻特性将电阻阵列两个极值之间的游标电阻降低至45 Ω(典型值)。简单的三线式升/降接口可在时钟速率高达50 MHz的情况下实现手动开关或高速数字控制。AD5111采用2 mm × 2 mm LFCSP封装。器件的保证工作温度范围为−40°C至+125°C的宽工业温度范围。应用•机械电位计的替代产品•便携式电子设备的电平调整•音量控制•低分辨率DAC •LCD面板亮度与对比度控制 •可编程电压至电流转换•可编程滤波器、延迟、时间常...

  AD5115 单通道、32位、升/降接口、±8 %电阻容差、非易失性数字电位计

  信息优势和特点 标称电阻容差误差:±8%(最大值) 游标电流:±6 mA 可变电阻器模式下的温度系数:35 ppm/°C 低功耗:2.5 μA(最大值,2.7 V,125°C) 宽带宽:4 MHz(5 kΩ选项) 上电EEPROM刷新时间: 50 μs 125°C时典型数据保留期:50年 100万写周期 2.3 V至5.5 V电源供电 内置自适应去抖器 宽工作温度范围:−-40℃至+125℃ 2 mm × 2 mm × 0.55 mm、8引脚超薄LFCSP封装产品详情AD5115 为32位调整应用提供一种非易失性解决方案,保证±8%的低电阻容差误差,A、B和W引脚提供最高±6 mA的电流密度。低电阻容差、低标称温度系数和高带宽特性可以简化开环应用和容差匹配应用。新的低游标电阻特性将电阻阵列极端处的游标电阻降至仅 45 Ω(典型值)。简单的3线升降式接口支持手动切换或时钟速率高达50 MHz的高速数字控制。AD5115采用2 mm × 2 mm LFCSP封装,保证工作温度范围为−40°C至+125°C的扩展工业温度范围。应用 机械电位计的替代产品 便携式电子设备的电平调整 音量控制 低分辨率DAC LCD面板亮度和对比度控制 可编程电压至电流转换 可编程滤波器、延迟、时间常数 反馈电阻可编程电源 传感器校准...

  AD5113 单通道、64位、升/降接口、±8 %电阻容差、非易失性数字电位计

  信息优势和特点 标称电阻容差误差:±8%(最大值) 游标电流:±6 mA 可变电阻器模式下的温度系数:35 ppm/°C 低功耗:2.5 μA(最大值,2.7 V,125°C) 宽带宽:4 MHz(5 kΩ选项) 上电EEPROM刷新时间: 50 μs 125°C时典型数据保留期:50年 100万写周期 2.3 V至5.5 V电源供电 内置自适应去抖器 宽工作温度范围:−-40℃至+125℃ 2 mm × 2 mm × 0.55 mm、8引脚超薄LFCSP封装产品详情AD5113为64位调整应用提供一种非易失性解决方案,保证±8%的低电阻容差误差,A、B和W引脚提供最高±6 mA的电流密度。低电阻容差、低标称温度系数和高带宽特性可以简化开环应用和容差匹配应用。新的低游标电阻特性将电阻阵列极端处的游标电阻降至仅45 Ω(典型值)。简单的3线升降式接口支持手动切换或时钟速率高达50 MHz的高速数字控制。AD5113采用2 mm × 2 mm LFCSP封装,保证工作温度范围为−40°C至+125°C的扩展工业温度范围。应用 机械电位计的替代产品 便携式电子设备的电平调整 音量控制 低分辨率DAC LCD面板亮度和对比度控制 可编程电压至电流转换 可编程滤波器、延迟、时间常数 反馈电阻可编程电源 传感器校准...

  AD5292 单通道、1%端到端电阻容差(R-TOL)、1024位数字电位计,具有20次可编程存储器

  信息优势和特点 单通道、256/1024位分辨率 标称电阻:20 kΩ、50 kΩ和100 kΩ 标称电阻容差误差(电阻性能模式):±1%(最大值) 20次可编程游标存储器 温度系数(变阻器模式):35 ppm/°C 分压器温度系数:5 ppm/°C +9V至+33V单电源供电 ±9V至±16.5V双电源供电 欲了解更多特性,请参考数据手册 下载AD5292-EP (Rev 0)数据手册(pdf) 温度范围:−55°C至+125°C 受控制造基线 唯一封装/测试厂 唯一制造厂 增强型产品变更通知 认证数据可应要求提供 V62/12616 DSCC图纸号产品详情AD5292是一款单通道1024位数字电位计1,集业界领先的可变电阻性能与非易失性存储器(NVM)于一体,采用紧凑型封装。这些器件能够在宽电压范围内工作,支持±10.5 V至±16.5 V的双电源供电和+21 V至+33 V的单电源供电,同时确保端到端电阻容差误差小于1%,并具有20次可编程(20-TP)存储器。业界领先的保证低电阻容差误差特性可以简化开环应用,以及精密校准与容差匹配应用。AD5291和AD5292的游标设置可通过SPI数字接口控制。将电阻值编程写入20-TP存储器之前,可进行无限次调整。这些器件不需要任何外部电压源来帮助熔断熔丝,并提供20次永久编程的机...

  信息优势和特点 单通道、1024/256位分辨率 标称电阻:20 kΩ 标称电阻容差误差:±1%(最大值) 50次可编程(50-TP)游标存储器 温度系数(变阻器模式):5 ppm/°C 2.7 V至5.5 V单电源供电 ±2.5 V至±2.75 V双电源供电(交流或双极性工作模式) I2C兼容接口 游标设置回读功能 上电后采用50-TP存储器数据刷新 紧凑型MSOP、10引脚、3 mm × 4.9 mm × 1.1 mm封装产品详情AD5272/AD5274属于ADI公司的digiPOT+™ 电位计系列,分别是单通道1024/256位数字变阻器,集业界领先的可变电阻性能与非易失性存储器(NVM)于一体,采用紧凑型封装。                                    这些器件的端到端电阻容差误差小于1%,并提供50次可编程(50-TP)存储器。业界领先的保证低电阻容差误差特性可以简化开环应用,以及精密校准与容差匹配应用。AD5272/AD5274的游标设置可通过I2C兼容型数字接口控制。将电阻值编程写入50-TP存储器之前,可进行无限次调整。这些器件不需要任何外部电压源来帮助熔断熔丝,并提供50次永久编程的机会。在50-TP激活期间,一个永久熔断熔丝指令会将游标位置固定(类似于将环氧树脂...

  信息优势和特点 单通道、1024/256位分辨率 标称电阻:20 kΩ、50 kΩ、100 kΩ 校准标称电阻容差:1% 多次可编程、一劳永逸的电阻设置,提供50次永久编程机会 温度系数(可变电阻器模式):35 ppm/°C 2.7 V至5.5 V单电源供电 ±2.5 V至±2.75 V双电源供电(交流或双极性工作模式) 欲了解更多特性,请参考数据手册产品详情AD5272/AD5274均为单通道、1024/256位数字控制电阻器1,端到端电阻容差误差小于1%,并具有50次可编程存储器。这些器件可实现与机械可变电阻器相同的电子调整功能,而且具有增强的分辨率、固态可靠性和出色的低温度系数性能。AD5272/AD5274能够提供业界领先的±1%保证低电阻容差误差,标称温度系数为35 ppm/ºC。低电阻容差特性可以简化开环应用以及精密校准与容差匹配应用。AD5272/AD5274的游标设置可通过I2C兼容型数字接口控制。将电阻值编程写入50-TP(五十次可编程)存储器之前,可进行无限次调整。这些器件不需要任何外部电压源来帮助熔断熔丝,并提供50次永久编程的机会。在50-TP激活期间,一个永久熔断熔丝指令会将游标位置固定(类似于将环氧树脂涂在机械式调整器上)。AD5272和AD5274提供3 mm x 3 mm、薄型LF...

  AD5291 单通道、1%端到端电阻容差(R-Tol)、256位数字电位计,具有20次可编程存储器

  信息优势和特点 单通道、256/1024位分辨率 标称电阻:20 kΩ, 50 kΩ和 100 kΩ 校准的标称电阻容差:±1%(电阻性能模式) 20次可编程 温度系数(变阻器模式):35 ppm/°C 温度系数(分压器模式):5 ppm/°C +9 V 至 +33 V 单电源供电 ±9 V至±16.5 V 双电源供电 欲了解更多特性,请参考数据手册 产品详情AD5291/AD5292属于ADI公司的digiPOT+™ 电位计系列,分别是单通道256/1024位数字电位计1 ,集业界领先的可变电阻性能与非易失性存储器(NVM)于一体,采用紧凑型封装。这些器件的工作电压范围很宽,既可以采用±10.5 V至±16.5 V双电源供电,也可以采用+21 V至+33 V单电源供电,同时端到端电阻容差误差小于1%,并提供20次可编程(20-TP)存储器。业界领先的保证低电阻容差误差特性可以简化开环应用,以及精密校准与容差匹配应用。AD5291/AD5292的游标设置可通过SPI数字接口控制。将电阻值编程写入20-TP存储器之前,可进行无限次调整。这些器件不需要任何外部电压源来帮助熔断熔丝,并提供20次永久编程的机会。在20-TP激活期间,一个永久熔断熔丝指令会将游标位置固定(类似于将环氧树脂涂在机械式调整器上)。AD5291/AD52...

  信息优势和特点 单通道、1024/256位分辨率 标称电阻:20 kΩ、50 kΩ、100 kΩ 校准标称电阻容差:1% 多次可编程、一劳永逸的电阻设置,提供50次永久编程机会 温度系数(可变电阻器模式):35 ppm/°C 2.7 V至5.5 V单电源供电 ±2.5 V至±2.75 V双电源供电(交流或双极性工作模式) 欲了解更多特性,请参考数据手册产品详情AD5270/AD5271均为单通道、1024/256位数字控制电阻器1,端到端电阻容差误差小于1%,并具有50次可编程存储器。这些器件可实现与机械可变电阻器相同的电子调整功能,而且具有增强的分辨率、固态可靠性和出色的低温度系数性能。AD5270/AD5271能够提供业界领先的±1%保证低电阻容差误差,标称温度系数为35 ppm/ºC。低电阻容差特性可以简化开环应用以及精密校准与容差匹配应用。AD5270/AD5271的游标设置可通过SPI兼容型数字接口控制。将电阻值编程写入50-TP(五十次可编程)存储器之前,可进行无限次调整。这些器件不需要任何外部电压源来帮助熔断熔丝,并提供50次永久编程的机会。在50-TP激活期间,一个永久熔断熔丝指令会将游标位置固定(类似于将环氧树脂涂在机械式调整器上)。AD5270和AD5271提供3 mm x 3 mm、薄型L...

  信息优势和特点 单通道、1024/256位分辨率 标称电阻:20 kΩ、50 kΩ、100 kΩ 校准标称电阻容差:1% 多次可编程、一劳永逸的电阻设置,提供50次永久编程机会 温度系数(可变电阻器模式):35 ppm/°C 2.7 V至5.5 V单电源供电 ±2.5 V至±2.75 V双电源供电(交流或双极性工作模式) 欲了解更多特性,请参考数据手册产品详情AD5270/AD5271均为单通道、1024/256位数字控制电阻器1,端到端电阻容差误差小于1%,并具有50次可编程存储器。这些器件可实现与机械可变电阻器相同的电子调整功能,而且具有增强的分辨率、固态可靠性和出色的低温度系数性能。AD5270/AD5271能够提供业界领先的±1%保证低电阻容差误差,标称温度系数为35 ppm/ºC。低电阻容差特性可以简化开环应用以及精密校准与容差匹配应用。AD5270/AD5271的游标设置可通过SPI兼容型数字接口控制。将电阻值编程写入50-TP(五十次可编程)存储器之前,可进行无限次调整。这些器件不需要任何外部电压源来帮助熔断熔丝,并提供50次永久编程的机会。在50-TP激活期间,一个永久熔断熔丝指令会将游标位置固定(类似于将环氧树脂涂在机械式调整器上)。AD5270和AD5271提供3 mm x 3 mm、薄型L...

  信息优势和特点 双通道、256位电位计 端到端电阻:2.5 kΩ、10 kΩ、50 kΩ和100 kΩ 紧凑型10引脚MSOP (3 mm × 4.9 mm)封装 快速建立时间:tS = 5 µs(上电时的典型值) 完整读/写游标寄存器 上电预设为中间值 额外的封装地址解码引脚:AD0和AD1 工厂编程应用中,计算机软件取代微控制器 单电源:2.7 V至5.5 V 低温度系数:35 ppm/°C 低功耗:IDD = 6 µA(最大值) 宽工作温度范围:−40°C至+125°C 提供评估板产品详情AD5243和AD5248提供一种适合双通道、256位调整应用的3 mm × 4.9 mm、紧凑型封装解决方案。AD5243可实现与三端机械电位计相同的电子调整功能,而AD5248可实现与两端可变电阻相同的调整功能。这些器件提供四种端到端电阻值(2.5 kΩ、10 kΩ、50 kΩ和100 kΩ),具有低温度系数特性,非常适合高精度、高稳定度可变电阻调整应用。游标设置可通过I2C兼容数字接口控制。AD5248具有额外的封装地址解码引脚AD0和AD1,允许多个器件在PCB上共享同一个双线C总线。游标与固定电阻任一端点之间的电阻值,随传输至RDAC锁存器中的数字码呈线性变化。(数字电位计、VR和RDAC这些术语可以互换使用。)该器...

  信息优势和特点 128 Position End-to-End Resistance 5kΩ, 10kΩ , 50kΩ , 100kΩ Ultra-Compact SC70-6 (2 mm x 2.1 mm) Package I2C Compatible Interface Full Read/Write of Wiper Register Power-on Preset to Midscale Single Supply +2.7 V to +5.5 V Low Temperature Coefficient 45 ppm/°C Low Power, IDD=3 µA typical Wide Operating Temperature –40°C to +125°C Evaluation Board Available Available in lead-free (Pb-free) package产品详情The AD5246 provides a compact 2 mm × 2.1 mm packaged solution for 128-position adjustment applications. This device performs the same electronic adjustment function as a variable resistor. Available in four different end-to-end resistance values (5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ), these low temperature coefficient devices are ideal for high accuracy and stability variable resistance adjustments.The wiper settings are controllable through the I2C compatible digital interface, which can also be used...

  AD5415 双通道、12位、高带宽、乘法DAC,内置四象限电阻和串行接口

  信息优势和特点 乘法带宽:10 MHz 片内四象限电阻提供灵活的输出范围 积分非线 V电源供电 ±10 V基准电压输入 50 MHz串行接口 更新速率:2.47 MSPS 扩展温度范围: -40℃至125℃ 四象限乘法 上电复位 功耗:0.5 µA(典型值) 保证单调性 菊花链模式 回读功能产品详情AD5415是一款CMOS1、12位、双通道、电流输出数模转换器(DAC)。 这款器件采用2.5 V至5.5 V电源供电,因此适合电池供电应用及其它应用。 该器件采用CMOS亚微米工艺制造,能够提供出色的四象限乘法特性,大信号乘法带宽达10 MHz。 满量程输出电流由所施加的外部基准输入电压(VREF)决定。 与外部电流至电压精密放大器配合使用时,集成的反馈电阻(RFB)可提供温度跟踪和满量程电压输出。 此外,该器件内置双极性操作及其它配置模式所需的四象限电阻。该DAC采用双缓冲三线式串行接口,并且与SPI®、QSPI™、MICROWIRE™及大多数DSP接口标准兼容。 采用多个封装时,还可以通过串行数据输出(SDO)引脚,将这些DAC以菊花链形式相连。 利用数据回读功能,用户可以通过SDO引脚读取D...

  AD5405 双通道、12位、高带宽、乘法DAC,内置四象限电阻和并行接口

  信息优势和特点 乘法带宽:10 MHz 片内四象限电阻提供灵活的输出范围 INL:±1 LSB 40引脚LFCSP封装 电源电压:2.5 V至5.5 V ±10 V基准电压输入 更新速率:21.3 MSPS 欲了解更多特性,请参考数据手册。产品详情AD5405是一款CMOS、12位、双通道电流输出数模转换器(DAC),采用2.5 V至5.5 V电源供电,适合电池供电及其它应用。    这款器件采用CMOS亚微米工艺制造,能够提供出色的四象限乘法特性,大信号乘法带宽最高可达10 MHz。满量程输出电流由所施加的外部基准输入电压 (VREF) 决定。与外部电流至电压精密放大器配合使用时,集成的反馈电阻(RFB) 可提供温度跟踪和满量程电压输出。此外,该器件内置双极性操作及其它配置模式所需的四象限电阻。利用这款DAC的数据回读功能,用户可以通过DB引脚读取DAC寄存器的内容。上电时,内部寄存器和锁存以0填充,DAC输出处于零电平。AD5405采用6 mm × 6 mm、40引脚LFCSP封装。应用 便携式电池供电应用 波形发生器 模拟处理 仪器仪表应用 可编程放大器和衰减器 数字控制校准 可编程滤波器和振荡器 复合视频 超声 增益、失调和电压调整...

  74ALVC162244 低电压16位缓冲/线V容差输入和输出 输出端带26欧姆串联电阻

  2244包含16个具有3态输出的同相缓冲器,可用作内存和地址驱动器,时钟驱动器或总线导向发射器/接收器。该器件为半字节(4位)控制器件。每个半字节均有独立的3态控制输入,可以短接在一起进行完整的16位运行.74ALVC162244设计用于低电压(1.65V到3.6V)V CC 应用,I / O能力最高可达3.6V.74ALVC162244也设计为输出端带26ohm串联电阻。此设计可降低应用中的线路噪声,如内存地址驱动器,时钟驱动器,或总线采用先进的CMOS技术制造,以在实现高速运行的同时保持CMOS低功耗。 特性 1.65V至3.6VV CC 电源操作范围 3.6V容差输入和输出电压 输出端带26ohm串联电阻 t PD 最长3.8 ns,3.0V到3.6VV CC 最长4.3 ns, 2.3V到2.7VV CC 最长7.6 ns,1.65V到1.95VV CC 断电高阻抗输入和输出 支持带电插拔 使用专利噪声/电磁干扰(EMI)消减电路 闩锁符合JEDEC JED78规定 静电放电(ESD)性能:人体模型

  2000V机械模型

  200V 同样采用塑料微间距球栅阵列(FBGA)封装 应用 此产品是一...

  信息产品分类接口和隔离 IOS子系统产品详情AC1362是一款完全密封的20 Ω、0.1%(典型值)、1/8 W、20 ppm/°C即插即用式替换电阻。

  信息产品分类接口和隔离 IOS子系统Additional 3B Resources: Accessories, Backplanes and Power SuppliesSales and Service: North America (SCS Embedded Tech), Rest of WorldDownload a PDF copy of this user manual

  AD5547 双通道电流输出、并行输入、16位乘法DAC,内置4象限电阻

  信息优势和特点 双通道 16位分辨率 2象限或4象限、4 MHz带宽乘法DAC ±1 LSB DNL ±1 LSB INL 工作电源电压:2.7 V至5.5 V 低噪声:12 nV/√Hz 低功耗:IDD = 10 µA (最大值) 建立时间:0.5 µs 内置RFB便于电流至电压转换 欲了解更多特性,请参考数据手册 下载 AD5547-EP 数据手册 (pdf) 军用温度范围(如−55°C至+125℃) 受控制造基线 唯一封装/测试厂 唯一制造厂 增强型产品变更通知 认证数据可应要求提供 V62/12651 DSCC图纸号 产品详情AD5547/AD5557分别是双通道、精密、16/14位、乘法、低功耗、电流输出、并行输入数模转换器,采用+5 V单电源供电,四象限输出的乘法基准电压为±10 V,输出带宽最高可达4 MHz。内置的四象限电阻有利于电阻匹配和温度跟踪,使多象限应用所需的元件数量最少。此外,反馈电阻(RFB)也可以简化通过外部缓冲实现电流-电压转换的操作。AD5547/AD5557采用紧凑型TSSOP-38封装,工作温度范围为–40°C至+125°C扩展汽车应用级温度范围。应用 自动测试设备 仪器仪表 数字控制校准 数字波形生成...

  AD5293 单通道、1%端到端电阻容差(R-Tol)、1024位数字电位计

  信息优势和特点 单通道、1024位分辨率 标称电阻:20 kΩ、50 kΩ和100 kΩ 标称电阻容差(电阻性能模式):1%(校正值) 可变电阻器模式下的温度系数:35 ppm/°C 分压器温度系数5 ppm/°C 单电源供电: 9 V至 33 V 双电源供电: ±9 V 至±16.5 V SPI兼容型串行接口 游标设置回读功能产品详情AD5293是一款单通道、1024位数字电位计1 ,端到端电阻容差该器件能提供业界领先的±1%保证低电阻容差误差,标称温度系数为35 ppm/°C。低电阻容差特性可以简化开环应用以及精密校准与容差匹配应用。AD5293采用紧凑的14引脚TSSOP封装。它的保证工作温度范围为−40°C至+105°C扩展工业温度范围。1本数据手册中,数字电位计和RDAC这些术语可以互换使用。应用 机械电位计的替代产品 仪器仪表:增益和失调电压调整 可编程电压至电流转换 可编程滤波器、延迟、时间常数 可编程电源 低分辨率DAC的替代产品 传感器校准电路图、引脚图和封装图...


德国赌场

@SHENZHEN ENERGY Corporation All Rights Reserved.

德国赌场

冀ICP备15023581号-1